April 16, 2017
TedTalk: https://www.youtube.com/watch?v=WaOUJa9fjXU
Medium: https://medium.com/ethnography-matters/why-big-data-needs-thick-data-b4b3e75e3d7
Big data can help us solve problems, optimize services, predict the future and learn more about ourselves and human behavior. But when big data cannot answer a question, or makes an incorrect prediction, what if it is because data is not telling us the whole story?
In a Ted Talk and an article on Medium, Tricia Wang, a technology ethnographer, implores us to realize that, even in the age of data-driven decision making, big data can have some serious blind spots, and often suffers from a loss of context through valuable variables and trends that defy quantification.
Insights on contained systems, such as electricity grids or delivery logistics, have established big data’s reputation for success. Although this reputation has attracted investment from a huge array of companies, Wang claims, 73% of big data projects are not profitable, because big data projects frequently do not produce the insights that they seem to promise. For dynamic systems, especially those that depend on human emotions, behavior, and how people are impacted and interact with their environment, certain variables are difficult to measure and model.
She describes how opportunities can be gained and losses diminished by using big data in conjugation with “thick data”, observations that use qualitative methods to understand human emotions, behaviors and interactions with context. For example, the realization by ethnographer Graham McCracken that Netflix users actually enjoy binge-watching, led Netflix to redesign their user experience, improve their business and transform the way we consume media. Through qualitative research and collecting stories about how users interact with their product, Netflix was able to go to their data science team, validate these findings, and act on this competitive insight.
Wang summarizes that while “Thick Data loses scale…Big Data loses resolution.” While big data analytics can have a huge sample size, recognize large-scale patterns, and benefit from the strengths of machine learning, thick data uses small samples sizes, but understands subjects at a much greater depth, and benefits from aspects of human intelligence and pattern recognition that still elude computer programs. As data scientists, the more we understand the limitations of our methods and pay attention to thick data, the more we can recognize the factors and variables our data is missing. With a more holistic perspective, data analysis is better poised to uncover more truthful and powerful insights.
Comments
Visit my weblog -https://www.mortaji.mx/simulador-exani-ii/
just extremely fantastic. I actually like what you've acquired
here, really like what you're saying and the way
in which you say it. You make it enjoyable
and you still care for to keep it sensible. I cant wait to read much more from you.
This is actually a tremendous web site.
This will provide you with plenty of time
and exercise to brainstorm and make sure what you are writing about is pertinent and what you want to make in. However, you can even be wondering and you'll discover
good essay writing examples.
My web page -upgrading the head unit
your customers. It is common for teachers to lament that students are
can not write despite having done very well within the PMR
English exam for 15-year-olds. Reading and writing whenever possible should be the best
strategy to develop a writing style.
Here is my webpage:car accessory store
fruitful for me, keep up posting these articles or reviews.
Same ingredient with this process are numerous with an alternative in the most of the web links a dangerous side.
Here is my blog post -upgrading your car
at this blog, I have read all that, so at this time me also commenting at this place.
your customers. The goal would be to find
a strategy to provide a complete response, all while focusing on as small
a place of investigation as possible. Remember that
if you're new at college you'll only recover should you practice, so
work tirelessly on each assignment as you will be enhancing academic writing skills with each one.
What would you suggest in regards to your publish that you just made a few days ago?
Any positive?